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Abstract. We address design considerations and outline requirements
for space telescopes with capabilities for high contrast imaging of exopla-
nets. The approach taken is to identify the span of potentially detectable
Earth-sized terrestrial planets in the habitable zone of the nearest stars
within 30 parsecs and estimate their inner working angles, flux ratios,
SNR, sensitivities, wavefront error requirements, and sensing and control
times parametrically versus aperture size. We consider 1, 2, 4, 8, and 16-m
diameter telescope apertures. The achievable science, range of telescope
architectures, and the coronagraphic approach are all active areas of
research and are all subject to change in a rapidly evolving field. Thus
presented is a snapshot of our current understanding with the goal of
limiting the choices to those that appear currently technically feasible.
We describe the top-level metrics of inner working angle, contrast and
photometric throughput and explore how they are related to the range
of target stars. A critical point is that for each telescope architecture
and coronagraphic choice, the telescope stability requirements have
differing impacts on the design for open- versus closed-loop sensing
and control. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI:
10.1117/1.OE.51.1.011002]
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control.
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1 Introduction
High-contrast exoplanet imaging refers to numerous varia-
tions of coronagraphy and occulters whereby the starlight is
suppressed relative to the planet light, thereby increasing
the planet-to-star contrast. Contrast, as defined herein, is
expressed as a ratio of the of the star’s luminosity to planet’s
luminosity. A coronagraph operating at a contrast of 1010

would imply that a star and planet differing by 10 orders
of magnitude in luminosity would be detectable in the focal
plane. An ideal coronagraph would suppress all the starlight
leaving only the planet’s light. The contrast at which a given
coronagraph operates is a function of the angular separation
of the planet to star, since a planet with a large angular
separation from its parent star sees a natural reduction in
the starlight due to its being concentrated into an Airy disk
point spread function [(Fig. 1(a)]. The planet-to-star angular
separation at which the contrast falls below a required value
is known as the inner working angle (IWA). Thus planets at
or outside the IWA are considered detectable, while those in
the IWA are not. However, there is not a definitive break
between inside and outside the IWA since the detectability
is often a graceful function of the IWA [Fig. 1(b)]. The outer
working angle (OWA) is the largest separation angle at
which a planet could be detected and this is generally limited
by the field-of-view of the optics and/or the number and
density of actuators of the deformable mirrors within the
coronagraph.

Light collected by the aperture is absorbed, diffracted,
and/or scattered. It thus absorbs and spreads the focal plane
planet light out over a larger region, and scatters starlight

into the region of the planet; these effects lower the contrast.
Throughput is generally lower for high-contrast imaging
systems than for simple imaging systems. This is due to the
larger number of optics and the introduction of focal planet
masks (occulting masks) and pupil plane (Lyot) masks.
Ideally the star- and planet-light throughput would be zero
and unity, respectively. However, this is not generally true
in practice due to a host of effects that will be described.

The target star, if we assume it has one or more planets,
would likely have dust and debris at or near the equatorial
plane of the star; this contributes stray light known as
exozodiacal light (exoZodi). Additionally, dust in our solar
system also contributes stray light known as local zodiacal
light (Zodi).

The target star is generally relatively close to our solar
system, from 1 to 30 parsecs, and thus is likely to have back-
ground stars and galaxies within the field-of-view that could
initially be misinterpreted as planets. Relative motion and/or
spectral differences can be used as discriminators. Addition-
ally, since a planet orbits its star, conditions would not always
be favorable to detection since it may be too close to the star,
or at a phase angle or inclination angle where little or no light
is reflected from the planet towards the telescope. A single
observation can only determine if a planet exists, but not
whether it does not exist. Thus a given star system may
have to be observed multiple times to definitively determine
whether a planet exists. This is known as “completeness.”1–3

Ensuring completeness to a given level links the number of
observations for each star system, to overall mission lifetime.

The signal-to-noise ratio (SNR) is the ratio of the col-
lected planetary photons to the integrated noise contribution,
which includes stellar leakage from diffraction, imperfect0091-3286/2012/$25.00 © 2012 SPIE
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optics, occulting masks, Lyot stops, stray light, pointing
jitter, finite size of target star, thermal- and vibration-induced
optical instabilities, photon noise, read noise, dark current
noise, and out-of-field scatter. The SNR is a function of con-
trast, angular separation, and time. Solving for the time to a
given SNR yields a viable sensitivity metric, e.g., solving for
the time to a SNR ¼ 5 (5-sigma detection) at the IWA.

Contrast, IWA, OWA, and optical throughput are purely
instrumental (telescopeþ coronagraph) parameters whereas
SNR and sensitivity depends on the target star, angular
separation of planet to star, as well as the instrument’s
performance; thus, the discovery space of potential science
targets plays a large role in defining the required telescope
and coronagraph architecture.

The purpose of an exoplanet high-contrast system is to
detect and characterize exosolar planets. This problem is
manifestly difficult due to typical terrestrial planets being
∼1010 times dimmer than the parent star in reflected light
and at angular separations as close as a few tens of milliarc-
seconds (mas). In designing a high-contrast imaging system,
performance considerations have to include: aperture size;
diffracting structure within the aperture; optical surface qual-
ity; optical stability; polychromatic effects; polarization; sen-
sing and control approach; and control times relative to drift
rates, pointing, and postprocessing such as point-spread
function and background subtraction.

High-contrast imaging for exoplanets is not a new
problem. The Hubble Space Telescope’s (HSTs) original
instrument complement contained a coronagraph, the Faint
Object Camera (FOC) f ∕288 coronagraphic mode. However,
few images were collected since HST’s primary mirror conic
constant rendered it impractical for coronagraphy. Subse-
quent HST instruments such as Near Infrared Camera and
Multi-Object Spectrometer (NICMOS), Space Telescope
Imaging Spectrograph (STIS) and Advanced Camera for
Surveys/High Resolution Channel (ACS/HRC) had corona-
graphs within them. However, contrasts corresponding to
10−9 to 10−10 suppression of the central star could only
be achieved at significant OWA (e.g. Kalas et al.).4 If a future
servicing mission were available for the HST then an area
where a new HST scientific instrument could have a high
impact on exoplanet science is with a high-contrast
instrument.5 The James Webb Space Telescope (JWST)

also will have significant high-contrast imaging
capabilities.6

2 Mapping of Science Requirements to Telescope

2.1 Candidate Stars

A database (HIP30), from the Hipparcos mission7,8 of 2350
stars out to 30 parsecs has become a standard for designing
mission architectures for direct imaging exoplanet missions.
The HIP30 catalog has been culled to a shorter list of 575
viable candidates, searchable for exoplanets by assuming
that for each star a prospective planet exists at the orbital
distance where liquid water could exist, i.e. in the habitable
zone (HZ). The inner edge (water boils off and/or runaway
greenhouse effect) of this zone is the innerHZ (iHZ) and
outer edge (where water remains in ice phase) is the outerHZ
(oHZ) for terrestrial planets. We define an average HZ
(aveHZ) as aveHZ ¼ ð1∕2ÞðiHZþ oHZÞ and use this as its
nominal value.

Figure 2 plots the 575 candidates versus distance from our
solar system where the “All Stars” are the 2350 stars in the
database and “Candidates” are the selected 575 candidate
stars. The five other curves show the stars by spectral classes
based on effective blackbody temperature, M (<3500 K), K,
(3500 to 5000 K), G (5000 to 6000 K), F (6000 to 7500 K),
and A (7500 to 10,000 K). The number to the right of the
spectral class in the legend shows the number of stars for
each spectra class. There are 24 stars labeled as U-stars (for
unknown) that have no listed spectral class in the database.
G-stars are similar in spectral class to our own Sun. Overall
there are 163 M, 219 K 124 G, 27 F and 18 A candidates. If a
terrestrial planet existed within the HZ, then based on the
star’s luminosity and spectral class a region around the star
can be mapped to an angular separation of the planet from its
parent star versus distance to the star as shown in Fig. 3. The
angular scale of the HZ is an important consideration in the
sizing of the telescope aperture and sets the IWA for high-
contrast imaging. It is unlikely that all candidates will have a
planet and the probability that a given planet has a terrestrial
planet is known as ηEARTH. Various estimates are available
for ηEARTH and NASA’s ongoing Kepler mission and the
European Space Agency’s ongoing COROT mission will
likely allow a more refined estimate in the near future.

Fig. 1 Contrast and focal plane diffraction. (a) Example of a 4-m circular aperture telescope’s ideal diffraction pattern at λ ¼ 500 nm. (b) The star’s
Airy disk normalized to unity at the peak (red) and a planet with a luminosity of 10−10 of the star separated by 100 mas (blue) would appear only 106

to 107 times dimmer due to the angular separation.
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Scatter, diffraction, stray light, and stability of the sensing
and control limit the IWA. An approach limited to, for exam-
ple, IWA ¼ 2ðλ∕DÞ requires accurate sensing and control of
wavefront and amplitude spatial frequencies at ∼2 cycles
per aperture, i.e., of periods on the order of ½ the diameter.
This is due to the diffraction integral, in the small-angle
approximation, mapping periodic wavefront errors at N
cycles per aperture to localized speckle in the focal plane at
Nðλ∕DÞ. Thus approaches operating at small inner working
angle require more demanding tolerances at low spatial
frequencies, i.e., for points on the primary mirror that are
physically further apart and thereby more difficult to sense
and control. While 4ðλ∕DÞ is considered as being conserva-
tive9 and 1ðλ∕DÞ as being considered very aggressive, it is
expected that in the nearer term, while still aggressive,
2ðλ∕DÞ is more reasonable, and exoplanets from the ground
have been imaged at this IWA.10 Thus, we assume a cor-
onagraphic instrument with an IWA of 2ðλ∕DÞ where λ is
the wavelength of visible band reflected planetary light
(λ ¼ 550 nm) and D is the diameter of the aperture.

The HZ is mapped to an aperture of a specific diameter,
by setting the IWA to the mean HZ, IWA ¼ 2ðλDÞ ¼ HZ or

D ¼ 2ðλ∕HZÞ, and the integral number of candidates at
or outside an IWA ¼ 2ðλ∕DÞ versus aperture diameter is
plotted in Fig. 4. Scaling to a different IWA is accomplished
by shifting the abscissa by the same factor, e.g., for an
IWA ¼ 4ðλ∕DÞ would require the abscissa (on a log scale)
to shift to the left such that on Fig. 4 a meter aperture is
shifted to ½ m, etc., and thus the number of candidates
would decrease. From Fig. 4 it is seen that a 120-m-diameter
telescope operating at IWA ¼ 2ðλ∕DÞ would be required to
assess all the candidate stars out to 30 parsecs. This exces-
sively large aperture is driven by the M-stars that are colder
and have peak luminosity in the NIR requiring that a planet
in the HZ be at closer angular separation for liquid water
to exist.

A 120-m-aperture telescope operating at IWA ¼ 2 � λ∕D
is clearly difficult for a space mission, but filtering out those
M-stars requiring close IWA allows for more reasonable
sized apertures as shown in Table 1. If ηEARTH is assumed
to be 20%, then the number of candidates would decrease
by a factor of 5. Jovian (Jupiter analog) planets could also
be searched for and would generally result in a larger IWA.

2.2 Planet-to-Star Luminosity Ratio and
Aperture Flux

The aperture sizing is based purely on inner working angle,
but the aperture collecting area is the primary consideration
for SNR ratio and sensitivity. Detector integration time could
become prohibitive for some candidates due to low planetary
photon count rates in visible light. A photometric model can
be used to assess the photon count rates for contrast, SNR,
and sensitivity calculations.

The luminosity ratio11,12 of the reflected planet light to
emitted starlight is given by:

Luminosity Ratio ¼ LP
LS

¼ α

�
RP

Rd

�
2

ϕðβÞ: (1)

LP and LS are the luminosities of the planet and star,
respectively, α is the planet’s geometric albedo, Rp is the
radius of the planet, and Rd is the planet’s radial distance

Fig. 2 Hipparcos stars <30 parsecs from Earth. All 2350 Hipparcos
stars plotted versus distance from Earth (black) and then are filtered
by selection criteria to a list of 575 candidates (blue) and separated by
stellar spectral class.

Fig. 3 Candidate stars mean habitable zone versus distance to star
by spectral class. All candidate HZ’s are <1 arcsec from the parent
star and concentrated between 1 and 100 mas.

Fig. 4 HIP30 stars mapped to telescope diameter. Candidate HZ is
mapped to high-contrast imaging system operating at IWA ¼ 2ðλ∕DÞ.
Assessment of all stars within 30 parsecs would require a 120-m tele-
scope; however, a 4-m would allow for searching 94 stars, of which 50
are G-stars, within ∼34 days per visit, or ∼170 days total if each was
visited five times for completeness.
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from the star. ϕðβÞ is the orbital phase function given by
ϕðβÞ ¼ ½sin β þ ðπ − βÞ cos β�∕π where β ∈ ½0; π� is the
phase angle and where cos β ¼ − sinðiÞ sinð2πΦÞ where i ∈
½0; π

2
� is the inclination angle. An inclination angle of 0

implies the star system is seen face-on, and an inclination
of π∕2 implies the star system is seen edge-on. The orbital
phase is given by Φ ∈ ½0; 1� and for an inclination angle of 0
then ϕðβÞ ≈ 0.32 independent of phase angle. At an inclina-
tion angle of 90 deg the phase function reaches a maximum
of ∼0.32 and a value of 0.32 is used throughout, i.e., we
assumed the best viewing conditions. The geometric albedo
of Earth is 0.367 and this is also assumed throughout. The
phase function is 0.32 for the point of longest elongation and
this is not necessarily where the planet is brightest but where
the planet is visible.11 The radius of the Earth is 6378.1 km
and the Sun–Earth distance is 149 × 106 km, yielding an
Earth/Sun luminosity ratio of 2.2 × 10−10. This value can
be used to scale the luminosity ratio of an assumed Earth-
sized terrestrial planet at the mean HZ around stars within
the database via:

ðLP∕LSÞ
ðLEARTH∕LSUNÞ

¼ αP
αEARTH

�
RP

RP-EARTH

�
2
�
Rd-EARTH

Rd

�
2

;

(2)

where LEARTH∕LSUN ¼ 2.2 × 10−10 is the luminosity ratio of
Earth to the Sun and LP∕LS is the luminosity ratio of the pla-
net to star. The albedo and the radius of the planet are both
not generally known before an observation and we assume
they are both the same as for Earth, to arrive at:

LP
LS

¼ 2.2 × 10−10
�
Rd-EARTH

Rd

�
2

: (3)

The radial distance for Earth from our Sun is 1 AU, and as
expected, the luminosity ratio scales inversely proportional
to the square of the distance from the star. The inverse square
is a consequence of assuming a fixed Earth diameter planet,
independent of how it formed or the distance from its parent
star, and, that its albedo is also constant; thus, its subtended
solid angle as seen from its parent star scales inversely to the
square of its distance from its parent star. The Earth-sized
planet is a tenuous assumption since terrestrial planets are
likely to span a range of sizes, masses, albedos inclination,
and phase angles; it is however a reasonable assumption as a

starting point for defining a range of potential telescope
architectures.

Figure 5 plots the luminosity ratio, color-coded for spec-
tral class, for each of the 575 candidates, assuming each has
an Earth-sized terrestrial planet at the mean HZ. The ordinate
is the number of stars with luminosity ratio greater than the
value shown on the abscissa. The majority of star systems
have luminosity ratios greater than 10−10 with most A stars
having less favorable luminosity ratios. G, K, and M stars
tend to have more favorable luminosity ratios. The luminos-
ity ratio is independent of the telescope plus instrument and
depends only on the star system.

Figure 6 plots the luminosity ratio for a planet in the HZ
versus angular separation for each of the spectral classes. M
and K stars tend to have more favorable luminosity ratios for
detection; however, they tend to be colder stars with the HZ
closer to the star requiring either a smaller IWA or larger
aperture telescope to achieve the required contrast. G, F, and
A stars have more favorable angular separations requiring
larger IWA but smaller luminosity ratios, requiring higher
contrast to detect them. Figure 6 relates the telescope
aperture (via the IWA) and the desired contrast (via the
luminosity ratio) over the span of candidate stars in the
HIP30 database. Figure 6 shows that the luminosity ratio
scales as approximately the inverse of the angular separation
independent of spectral class. This implies that a corona-
graph may not have as stressing contrast requirements for

Table 1 Candidate stars versus aperture.

Number of stars at or outside IWA

Diameter (meters) IWA (mas) A (18) F (27) G (124) K (219) M (163) U (24) Total (575) Δt to SNR ¼ 5

1 m 226.9 5 1 2 1 0 0 9 159.19

2 m 113.4 16 8 6 1 0 0 31 120.74

4 m 56.7 17 22 50 5 0 0 94 33.76

8 m 28.4 17 27 119 30 1 0 194 6.08

16 m 14.2 17 27 124 132 9 0 309 0.79

Fig. 5 Number of candidates versus luminosity ratio for each spectral
class. Luminosity ratio is independent of the telescope and instrument
and depends only on the star system.
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HZ at smaller angular separations, and a compromise exists
between IWA and contrast when the available candidate stars
are incorporated.

The stellar photon count rate at the telescope aperture
is estimated from the star’s visual magnitude, aperture
diameter, and spectral bandpass. The stellar and terrestrial
aperture photon count rate for a planet in the HZ, with
F0 ¼ 108 ph∕ sec -m2-nm, are given by:

�
FSTARðph∕ secÞ ¼ πF0 × 10−

MV
2.5 ðD∕2Þ2Δλ

FPLANETðph∕ secÞ ¼ ðLP∕LSÞπF0 × 10−
MV
2.5 ðD∕2Þ2Δλ

:

(4)

Figure 7 plots the total collected planetary photons per
second (ph∕ sec) for an aperture area of 1-m2 assuming
each candidate has a planet in the HZ with a 20% spectral
filter of full-width-half-max (FWHM) of Δλ ¼ 110 nm
centered on λ ¼ 550. The estimates are from applying the
second equation in Eq. (4). Scaling to other aperture sizes
is by multiplying the aperture area in m2. These aperture
count rates are not the detector count rates, since diffraction
and scatter spread the counts out, and absorption losses in the
telescope optics, instrument, and detector reduce the focal
plane count rates.

2.3 Focal Plane Count Rates

The photon counts incident upon the aperture are subse-
quently absorbed and diffracted in the optics and have
imperfect conversion from photon to electron counts by
the detector. The diffraction is a consequence of the finite
aperture size and results in redistribution of the photons
into an optical point spread function (PSF). The ideal PSF
of a circular aperture is the Airy disk function, where

θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2x þ θ2y

q
is the sky angle in units of lam∕D, given by:

PSFðθÞ ¼ π

�
J1ðπθÞ
πθ

�
2

≈ π
3
2

�
3

ffiffiffi
3

p

16

��
1

1þ ðπ4∕8Þθ3
�
. (5)

The PSF is normalized such that its integral is unity. Its
central core, to a radius of θ ¼ 1.22λ∕D, contains ∼84% of
the energy and a detector pixel is sized to account for 84%
of the energy.

The respective stellar and planetary energy are each
distributed into separate PSFs centered on their sky loca-
tions. For an angular separation of θP, in units of λ∕D,
the distribution of focal plane photoelectron count rates is
given by:

(
FSTARðθÞ ¼ 0.84SF010

−MV
2.5 ðD∕2Þ2ð3 ffiffiffi

3
p

∕16Þπ5
3ð1∕1þ π4

8
θ3ÞΔλTOq:e:

FPLANETðθÞ ¼ 0.84ðFP∕FSÞF010
−MV

2.5 ðD∕2Þ2ð3 ffiffiffi
3

p
∕16Þπ5

3½1∕1þ π4

8
ðθ − θPÞ3�ΔλTOq:e:

: (6)

In Eq. (6), TO is the end-to-end transmission of the optics,
q.e. is the quantum efficiency in units of photoelectrons/
photon, and S is the starlight suppression factor of the cor-
onagraph. The units of FSTARðθÞ and FPLANETðθÞ are photo-
electrons per pixel per second. Based on the above model,
the ratio of focal plane planet detector counts to star counts
at the location of the planet θ ¼ θP is:

QðθPÞ ¼
FPLANETðθPÞ
FSTARðθPÞ

¼ 1

S

�
FP

FS

��
1þ π4

8
θ3P

�
; (7)

where Q is a function of the planet-to-star angular separa-
tion, and since the model in Eq. (6) has a θ3P dependency,
so does Q. All coronagraphs do not necessarily have this
same dependency with angle but this is assumed based on
assumptions about diffraction in Lyot and occulter-type
coronagraphs. It is likely that a phase-induced amplitude
apodization (PIAA coronagraph), without an inverse PIAA,
would have a higher order dependency; however, in order to
put the field of view back, an inverse PIAA would be
required and this would put the dependency back to ∼θ3P.
Nulling type coronagraphs perform beam nulling in the
pupil plane but will ultimately be brought to focus with a
limiting aperture introducing diffraction that is also ∼θ3P.
Thus based on limited information herein, we assume the
θ3P but with the caveat that other dependencies are likely but
are not yet well understood; as further information becomes

available this should be revisited since a clear trade exists
between the background diffraction dependency and perfor-
mance of a given coronagraph.

Defining the contrast at the IWA as C ¼
S½1þ ðπ4∕8ÞIWA3�−1 gives

QðθPÞ ¼
1

C

�
FP

FS

�
1þ π4

8
θ3P

1þ π4

8
IWA3

≈
1

C

�
FP

FS

��
θP

IWA

�
3

: (8)

Thus a star system with a planet in the HZ for a corona-
graph at the IWA and operating at C ¼ 1010 would give
Q ¼ 1, implying the count rate from the star and planet in
a pixel centered on the planet would be the same. Q
expresses the ratio of the planet counts to leaked stellar
counts and it is linear in contrast and linear in luminosity
ratio but grows approximately as the cube of the angular
separation when expressed in units of λ∕D, implying that
doubling the aperture size moves the planet twice as far
out in λ∕D units and thus gives an 8-fold gain in Q. The opti-
mal value of Q is discussed is a function of the sampling,
detector noise characteristics, pointing jitter, finite size of
a detectors’ pixel and where the planet occurs within the
pixel, spectral bandpass, and the postprocessing algorithms.
Coronagraphs can operate with Q < 1 since matched filter-
ing, Bayesian estimation13 and nonlinear techniques can be
employed to optimally estimate if a planet exists in a given
dataset.
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2.4 Local and Exo-Zodiacal Light

The above does not contain the effects of local zodiacal and
exo-zodiacal light. Model and observations of exoZodi gen-
erally show complex morphological behavior both radially
and azimuthally and as function of the age of the stellar
system.14,15 Herein we are primarily concerned with the
deleterious effects both Zodi and exoZodi would have on
the detection of terrestrial planets and thus express both the
Zodi and exoZodi as simplified models only at the assumed
location of a terrestrial planet. Zodi and exoZodi are usually
expressed in magnitude per arcsec square. Conversion to
photoelectron count rate in a detector pixel of solid angle
on the sky of ΔΩ is given by:

�
FAp:Z ¼ F010

−MZ
2.5

πD2

4
ΔλΔΩT0q:e:

FAp:EZ ¼ F010
−MEZ

2.5
πD2

4
ΔλΔΩT0q:e:

: (9)

The units of ΔΩ are arcsec-squared. Assuming that
a given detector pixel is square of width λ∕D, gives
ΔΩ ¼ ðλ∕DÞ2 ⋅ ð3600 × 180∕πÞ2 arcsec2, and gives
ðπD2∕4ÞΔλΔΩ ¼ ðπ∕4Þλ2Δλ ⋅ ð3600 × 180∕πÞ2, which is
just an expression of the radiance being conserved; i.e.,
the product of the aperture with solid angle is ∼λ2.

The typical values of MZ ¼ 22 magnitudes∕arcsec2 and
MEZ ¼ 22 magnitudes∕arcsec2 are used throughout to
denote 1-Zodi. Using 22 magnitudes∕arcsec2 gives
0.15 photons∕ sec ∕pixel per m2 of aperture without includ-
ing the optics transmission and quantum efficiency. Figure 7
also shows the Zodi plotted as a solid line. Even 1-Zodi has
the net effect that some of the planets yield lower count
rates per pixel than the Zodi. While the exoZodi is not gen-
erally known, models of it exist as a function of age of a
given star system. Models show that Zodi is slowly varying
on a spatial case with respect to the scale of planet; hence
it can in principle be subtracted off, but it does con-
tribute photon noise after subtraction. Young systems,
<500 Myrs, can have dust density at thousands of times
more dense that our solar system at 4.5 Gyrs age. The
level of exoZodi represents an unknown for the design of
any high-contrast exoplanet system at this time; however,
ground-based astronomy and JWST will likely make signif-
icant inroads to the levels of dust in nearby candidate
systems.

2.5 Signal-to-Noise Ratio and Sensitivity

The above set of calculations allows for the estimation of
SNR parametrically as a function of aperture over the HIP30
database of candidate stars. With the above relations and
SNR, in the form of sensitivity, we are in a better position
to estimate the realizable science for a specific set of archi-
tectures and to error budget these architectures for various
coronagraphic approaches. The SNR is given by:

SNR ¼ FPLANETΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPLANETΔt þ FSTARΔt þ FZΔt þ FEZΔt þ iDΔt þ σ2e

p ; (10)

where iD is dark current in photoelectrons∕ sec ∕pixel, σe is
the detector read noise, and Δt is the detector integration
time. The residual speckle noise is implicitly included in the
term FSTARΔt since this term is the noise variance of the resi-
dual leaked starlight due to incomplete starlight suppression
and imperfect wavefront control. The term FPLANETΔt is the
photon noise due to the planet, and FZΔt and FEZΔt are the
photon noise assuming perfect subtraction of the Zodi and
exoZodi. In practice these will be unlikely to be perfectly
subtracted and will show up in a manner analogous to flat
fielding error. The photon limited SNR can be taken as an
upper bound on performance and is given by assuming
that σe ¼ 0 and iD ¼ 0 to give:

SNR ¼ FPLANET

ffiffiffiffiffi
Δt

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPLANET þ FSTAR þ FZ þ FEZ

p : (11)

The terms in the denominator are the photon noise from
each the planet, stellar leakage (speckle noise), Zodi, and
exoZodi, respectively. Scatter from out-of-field sources
and background sources are not included. Solving Eq. (11)
for time yields the photon-limited time to a given SNR as:

Δt ¼ SNR2

�
FPLANET þ FSTAR þ FZ þ FEZ

F2
PLANET

�
: (12)

The terms within Eq. (12) were integrated over a V-band
spectral filter for each of the 575 candidates for a 1-m dia-
meter aperture and the “normalized” time versus angular
separation plotted in Fig. 8. The actual time (seconds) to
SNR are given by dividing the value on the ordinate of Fig. 8
by the factor D

10
3 where D is the aperture diameter in meters.

Thus, for example, a normalized time of 106 s would scale

Fig. 6 Luminosity ratio for a terrestrial planet in the HZ for each spec-
tral class versus angular separation. Relates IWA and contrast to
science requirements.
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down by a factor of 2
10
3 ¼ 10.08 or to ∼105 s for a 2-m

diameter aperture.
Times to different SNR’s are given by multiplying by the

ratio of squares of the SNRs per Eq. (12). Changing spectral
filters is accomplished by multiplying time by the ratio of
110 nm to the new filters bandpass width—while this is
an approximation, it is reasonable in visible light.

Figure 8 is significant in that it couples the integration
time for each of the candidates from each spectral class to its
angular separation from the parent star for a planet in the HZ.
The choice of aperture size in Fig. 8 has been left uncon-
strained since we desire to estimate the science return para-
metrically versus aperture. In other words, the scaling shown
in Fig. 8 now allows for parametrically assessing exoplanet
detection performance as a function of aperture size and
these results are shown in Table 1.

2.6 Detection Summary

Table 1 summarizes the number of stars, that if exoplanets
exist within their HZ, could be detected for five aperture
sizes and the amount of time to SNR ¼ 5 in days to detect
these planets using a spectral filter centered on 550 nm with

FWHM of 110 nm. The number of stars increases with
increasing aperture size [Fig. 9(a)], while the integration time
decreases [Fig. 9(b)]. A 4-m aperture operating at 2ðλ∕DÞ
IWAwould be capable of detecting a total of 94 HZ exopla-
nets with 50 of those G-stars if exoplanets existed around
them. If we assume that to completely search the system it
would take five visits at 33.76 days per visit, it would yield a
total of 168.8 days, and if ηEARTH is 20% then potentially
∼18 exoplanets in the HZ could be detected. At the time
these 18 exoplanets were definitively detected they could be
spectrally characterized to a SNR ¼ 5 with a 10-nm-width
spectral filter in (110 nm∕10 nm) 33.8 days ¼ 371.4 days,
or approximately one year per planet. Lower spectral resolu-
tions would give shorter times.

2.7 Characterization and Spectroscopy

Spectroscopic detection is one of the prime mission drivers
since it is what would be used to determine if biomarkers
existed within a planet’s atmosphere. Spectroscopy is more
time consuming since the light must be dispersed into spec-
tral bands and integrated long enough to achieve the SNR per
spectral band. These times can be long if the collection area
is small, per the example in the previous section. Addition-
ally the planet may not be visible throughout the time it takes
to integrate enough light since the planet is moving in its
orbit. Also, the atmospheric abundances and pressures may
be such that the absorption lines are only small dips in the
spectrum and if not sufficiently pressure-broadened could be
very narrow, all of which when combined may make the
spectral characterization difficult. An alternative approach
is spectrophotometry, i.e., filter spectroscopy, whereby a set
of filters centered on either specific spectral lines and/or

Fig. 8 Normalized V-band sensitivity. Divide the normalized sensi-
tivity by D10∕3 to arrive at the actual time (in seconds) to achieve a
SNR ¼ 5 for each candidate star with a planet in the HZ for a
V-band filter.

Fig. 9 (a) Number of stars with an HZ at or outside IWA versus aper-
ture diameter (bar plot of second to last column in Table 1). (b) Time
(days) to SNR ¼ 5 for a single observation of each of candidates ver-
sus aperture in Table 1 (last column of Table 1).

Fig. 7 Aperture flux of planet in HZ versus angular separation. Zodi
shown as flux in pixel of solid angle ∼ðλ∕DÞ2.
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colors are used. If the spectral filters are used serially then the
times would still be long; however, if dichroic beamsplitters
are used then all the filters could be brought to bear at the
same time, effectively multiplexing the time as a dispersing
spectrometer would, but with each filter’s width optimized
for a specific spectral signature. While the range of options
is large and ill-defined at this point, we do show the time to
SNR, versus aperture size, versus spectral resolution to
enable setting a bound on the time to spectrally characterize.

3 Architecture Considerations

3.1 Generic Model of Internal Coronagraph

In order to assess the tolerances on a given architecture a
generic approach is needed that applies to viable corona-
graphs. In order to impart insight and delineate the sensitiv-
ities to errors and control frequencies, an approximated
analytic formalism is developed. An 8th-order Lyot-type
coronagraph16 is shown in Fig. 10 whereby propagation
of light through the coronagraph can be broken down to:
(i) propagation from the telescope’s exit pupil to 1st focal
plane, (ii) application of an occulting mask, (iii) propagation
from this occulting plane to a re-imaged exit pupil, (iv) appli-
cation of a Lyot stop, and (v) propagation to the final science
focal plane. While not immediately obvious, such a model
can encompass most coronagraphs, provided the correct
terms are identified. We will first step through the sequence
of steps as shown in Fig. 10 and subsequently approximate
the terms that are important for wavefront and amplitude
errors.

Let the complex electric field at the telescope’s exit pupil
be given by:

Pð~rÞ ¼ Að~rÞ½1þ δAð~rÞ�eiδϕð~rÞ
≈ A0½1þ δAð~rÞ þ iδϕð~rÞ�; (13)

where the approximation is straightforward and based on
retaining up to the 1st-order term in the small-angle approx-
imation of the phasor term. This is a common approximation
in coronagraphy since in order for a coronagraph to operate
at high contrast it must operate in a regime where the small-
angle approximation is valid. The effect of this approxima-
tion and its range of limitation has been explored in the
context of coronagraphy by multiple authors.17,18

The normalized pupil plane coordinates are given by
~r ¼ ðx; yÞ, such that j~rj ≤ D∕2, where D is the diameter
of the aperture. For elliptical or segmented or sparse aper-
tures, it is the largest distance between any two points within
the aperture, A0 is the mean amplitude, and δAð~rÞ represents
a fractional variation in the amplitude after traversing the
telescope, δϕð~rÞ is the phase errors incurred in passing
through the telescope, and δϕð~rÞ ¼ ð2π∕λÞWð~rÞ relates
the wavefront error Wð~rÞ to the phase errors, and where λ
is the wavelength. The errors in a coronagraph need to be
small to detect a planet, and hence the small-angle approx-
imation has been used in Eq. (13), whereby terms to only the
first order have been retained.

Propagation through the sequence of five steps shown in
Fig. 10 is accomplished by stepping through:

8>>>>><
>>>>>:

ðiÞ → Exit pupil to focal plane

ðiiÞ → Apply occulting mask

ðiiiÞ → Re-image the exit pupil

ðivÞ → Apply Lyot stop

ðvÞ → Propagate to science focal plane

¼

8>>>>>><
>>>>>>:

ASFð~θÞ ¼ R
Pð~rÞe−i2πλ ~θ·~rd~r

tCORð~θÞASFð~θÞ ¼ tCORð~θÞ
R
Pð~rÞe−i2πλ ~θ·~rd~rR

tCORð~θÞASFð~θÞei2πλ ~θ·~rd~θ ¼ ~tCORð~rÞ � �Pð~rÞ
Lð~rÞ½~tCORð~rÞ � �Pð~rÞ�R
Lð~rÞ½~tCORð~rÞ � �Pð~rÞ�e−i2πλ ~θ·~rd~r ¼ ASFLð~θÞ � �½tCORð~θÞASFð~θÞ�

: (14)

In Eq. (14) ~θ ¼ ðθx; θyÞ is the focal plane coordinate
mapped to sky angular coordinates, ASFð~θÞ is the complex
scalar field in the 1st focal plane known as the amplitude
spread function, tCORð~θÞ ∈ C is the focal plane occulting
mask and can either be real (amplitude mask) or complex
(phase and/or amplitude and phase mask), Lð~rÞ is the
Lyot stop, and is usually a region of the reimaged exit
pupil that is smaller, i.e. less relative area, than the original
exit pupil, and ASFLð~θÞ is the amplitude spread function of
the Lyot stop. “��” denotes 2-D convolution. Magnifications
are implicitly taken into account by choosing to work
in relative pupil coordinates and angular sky coordinates.
Overall phase factors have been neglected, since they do
not contribute the final result. The form of the propagators
take the form of two-dimensional (2-D) Fourier transforms
with conjugate variables given by ~r and ~θ.The science focal
plane’s complex electric field and intensity are respectively
given by:

�
EFð~θÞ ¼ ASFLð~θÞ � �ðtCORð~θÞASFð~θÞÞ
IFð~θÞ ¼ jASFLð~θÞ � �j½tCORð~θÞASFð~θÞ�j2

: (15)

Equation (15) describes the basic propagation through an
internal coronagraph and can be used to model most varia-
tions including Lyot coronagraphs with various occulting
masks and Lyot stops,16 quadrant phase masks,19 vortex
type coronagraphs,20 and visible nulling coronagraphs.21

External occulters22–24 also approximately fit into this
model since the starlight is suppressed prior to entering
the telescope, and the residual starlight entering the aperture
is subsequently diffracted into an Airy-like pattern. Phase
induced amplitude apodization (PIAA)25 performs pupil
remapping and requires a different model. However, if a
PIAA is used with an inverse PIAA, the field of view is
reconstructed after suppression and subsequently brought
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to focus yielding a similar dependence, i.e., the residual will
follow approximately an Airy disk-like dependence.

3.2 Wavefront and Amplitude Errors

The approach taken is to use the forms derived in Sec. 3.1
based on the linear expansion of the wavefront phasor to
assess first-order requirements on sensing and control to
achieve the contrast at the IWA for each of the candidate
stars. Multiple authors have used various forms of these
approaches in the context of coronagraphy to derive scaling
relations,18,26 as the linear approach imparts physical insight
and is generally used for simplicity. Full-scale modeling
ultimately is required to assess the deviations of the simpler
models from the more rigorous models. The form we use is
derived herein for completeness.

The approximated form of the telescope pupil can now be
used in Eq. (15) to yield

IFOCð~θÞ ≈ hjASFLð~θÞ
� �ðtCORð~θÞASFð~θÞ

þ tCORð~θÞfASF0ð~θÞ
� �½δ ~Að~θÞ þ iδ ~ϕð~θÞ�gÞj2i; (16)

where ASF0ð~θÞ is the amplitude spread function without
amplitude and phase errors, and δ ~Að~θÞ, δ ~ϕð~θÞ are the 2-D
Fourier transforms of the amplitude and phase errors, respec-
tively. If ASF0ð~θÞ is much more compact than δ ~Að~θÞþ
iδ ~ϕð~θÞ then Eq. (16) can be approximated by:

IFOCð~θÞ ≈ hjASFLð~θÞ � �ftCORð~θÞASFð~θÞ
þ tCORð~θÞ½δ ~Að~θÞ þ iδ ~ϕð~θÞ�gj2i: (17)

Let hδ ~Að~θÞi ¼ hδ ~ϕð~θÞi ¼ 0, since mean amplitude and
phase errors do not contribute to a loss in contrast, to give:

IFOCð~θÞ ≈ PSFLð~θÞ � �½TCORð~θÞPSFð~θÞ�
þ PSFLð~θÞ � �fTCORð~θÞ½PSDδAð~θÞ
þ PSDδϕð~θÞ�g; (18)

where TCORð~θÞ ¼ jtCORð~θÞj2 is the intensity transmittance of
the coronagraph versus angle on the sky and where we have

used PSDδAð~θÞ ¼ hjδ ~Að~θÞj2i and PSDδϕð~θÞ ¼ hjδ ~ϕð~θÞj2i for
the power spectral densities of the amplitude and phase
errors, respectively.

The power spectral densities are based on ensemble
averages of the Fourier transforms of the wavefront and
amplitude errors in keeping with the formal definition of
the power spectral density (PSD). Thus a given PSD does
not represent a specific realization of wavefront or ampli-
tude-induced speckle, but does represent an average over
an ensemble of these speckles induced by different realiza-
tions of wavefront and amplitude errors. The use of PSDs to
specify optical surfaces, wavefront, and amplitude errors is
now a standardized approach and was used to specify the
requirements on the Hubble Space Telescope, Chandra
X-ray Observatory27 and the James Webb Space Telescope,
among others, and a PSD transfer function approach was
developed for a visible nulling coronagraph.28

A perfect coronagraph is when the first term, PSFLð~θÞ
� � ½TCORð~θÞPSF0ð~θÞ� ¼ 0, and the remainder gives the leak-
age as:

ILEAKð~θÞ ≈ PSFLð~θÞ
� �fTCORð~θÞ½PSDδAð~θÞ
þ PSDδϕð~θÞ�g: (19)

If we normalize the PSDs such that integral over the focal
plane, i.e. all spatial frequencies, is unity, then the focal plane
leakage is given by:

ILEAKð~θÞ ≈ PSFLð~θÞ
� �fTCORð~θÞ½σ2δAPSDδAð~θÞ
þ σ2δϕPSDδϕð~θÞ�g; (20)

and σ2δA, σ
2
δϕ are the amplitude and phase error variances,

respectively, where σδϕ ¼ ð2π∕λÞσδW , and σδW is the rms
wavefront error in the same units as the wavelength.
Interchange between spatial frequencies, in cycles per
aperture (cpa) and angle on the sky in units of λ∕D, is trivial
in these units; e.g., a spatial frequency of 4 cpa gives a

Fig. 10 Star and planet light propagation through 8th-order Lyot coronagraph.
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speckle centered on 4ðλ∕DÞ of width defined by the width
of Lyot stop PSF, i.e., where D is the stopped-down D.
The net effect is that, to 1st order, amplitude and phase errors
both induce focal plane speckle; however, the focal plane
location of the amplitude error-induced speckle does not
change nor scale with wavelength, whereas both the focal
plane location and brightness of a wavefront error speckle
varies with wavelength.29

A fixed given integral, i.e., a white noise and a power law
PSD, both with the same power integrated out to a given spa-
tial frequency, yields a power-law PSD with more power in
the lower spatial frequencies thereby requiring progressively
tighter tolerances on the sensing and control at low spatial
frequencies and correspondingly less control at mid- and
high-spatial frequencies. Low spatial frequencies arise from
points on the surface that are far apart, i.e. long correlation
lengths. Thus the most stressing tolerances are for those that
are the most difficult to control.

A white noise PSD is, however, unlikely; conventional
polishing and coating practices tend to yield mirror surface
PSDs30,31 and residual coating error PSDs that follow power
law functions of the form ≈1∕½1þ ðf ∕f nÞα� , where f n is the
knee spatial frequency, so called because on a log-log plot
the PSD has a break-over point at the knee frequency.
The exponent α is typically on the order of 2 to 3, and
the point at which the PSD is larger than the PSF is the tran-
sition from diffraction to scatter limited.32 If we assume a
normalized PSD of the form:

PSDð~f Þ ¼ α

2π2f 2n
sin

�
2π

α

�
σ2T

1þ ðj~f j∕f nÞα
for α > 2;

(21)

this functional form is normalized such that its integral over
all 2-D spatial frequencies is equal to the variance σ2T of the

total amplitude or phase error and where j~f j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
.

The PSD has units of power per spatial frequency squared,
with the spatial frequency in cpa or equivalently in λ∕D of
sky angle.

3.3 Temporal Drift and Control

The amplitude and phase errors are also dynamic in that they
vary with time due to thermal and structural variations in
the optics and the structures that mount the optics. Even if
the primary and secondary mirrors are dimensionally stable,
the truss structure has eigenmodes which, when excited,
cause the footprint of the primary mirror (PM) beam to shift
or shear on the secondary mirror (SM). This implies that the
spatial frequency on the PM will shear on the SM, causing
temporal variations of both the amplitude and phase errors
and this occurs throughout the optical system, i.e., modal
excitations and thermal drift shift, and distort the optical
surfaces. Thus the PSDs have a component in the temporal
frequency domain and are actually three-dimensional (3-D)
with respect to the frequencies ðf x; f y; f tÞ where the first two
frequencies are spatial frequencies in cpa in x and y direc-
tions and the third is the temporal frequency in Hz. The
3-D PSD then gives the power at a given spatial-temporal
frequency. This is a more natural way to specify both the
critical spatial and temporal frequencies as well as the inter-
play between them, and lends itself well to the formalism of

sensing and control via a transfer function approach for each
contributor, and for wavefront and amplitude sensing and
DM control.

Assume a temporal PSD of the form ≈½1þ ðf t∕f DÞ2�−1
where f D is the temporal knee or drift frequency. It is likely
that the underlying form of the temporal PSD approximately
follows this functional form but with sharp or high Q modes
due to the natural frequencies of the structure. Excitation of
these modes can occur due to reaction and momentum
wheels; the assumption herein is that they are well damped,
or isolated, and that this PSD form represents a reasonable
approximation to the underlying model.

The overall error spatial-temporal PSDs become:

PSDð~f ; f tÞ ¼ σ2T
α

π3f 2nf D
sin

�
2π

α

�
1

1þ ðj~f j∕f nÞα

×
1

1þ ðf t∕f DÞ2
for α > 2; (22)

where f t ∈ ½0;∞� and j~f j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
and ðf x; f yÞ ∈ ½0;∞�.

The units of the total error PSD are now power per spatial
frequency squared per Hz. The integral of total error PSD
over all spatial and temporal frequencies is σ2T . There is an
implicit assumption in this PSD form in that it assumes that
the spatial errors are uncorrelated with the temporal errors.
Strictly speaking this is not the most general case, since for
example, a periodic temporal variation of the SM support
structure will introduce time variations that are different at
differing spatial frequencies. It is more proper to think of
this separable functional form of the PSD as a bound on
the errors.

Let the maximum frequency at which the deformable mir-
ror (DM) is controlled be given by f C, and let the spatial fre-
quency exponent be α ¼ 3 and divide the spatial frequency
into the 3 bands for low-, mid- and high-spatial freq-
uency. Integrating over the three bands from 0 to the control
frequency with a knee frequency of f n ¼ 1 cpa and α ¼ 3
gives the contribution from each band:

8>><
>>:

Low

Mid

High

→

8>><
>>:

f ∈ ½0; 4� cpa
f ∈ ½4; 32� cpa
f ∈ ½32;∞� cpa

→

8>><
>>:

σLO

σMID

σHI

¼ σT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan−1

�
f C
f D

�s 8>><
>>:

0.710992

0.338612

0.128267

: (23)

If f C ≫ f D, or equivalently the system is stable relative to
the control, then tan−1ðf C∕f DÞ ≈ π∕2, and σ2LO þ σ2MIDþ
σ2HI ¼ σ2T . Thus only as the ratio of the control to drift fre-
quency exceeds unity does the control efficacy approach
unity (Fig. 11).

Folding in the temporal PSD leads to a modified leakage
term by multiplying the PSDs by the idealized control term
to give a leakage contribution in the science focal plane of:
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ILEAKð~θÞ ≈
π

2

1

tan−1ðf C∕f DÞ
PSFLð~θÞ

� �fTCORð~θÞ½σ2δAPSDδAð~θÞ
þ σ2δϕPSDδϕð~θÞ�g: (24)

Thus the leakage is a strong function of the ratio of the con-
trol to drift frequency, and for low control frequencies,
f C ≪ f D, then�
π

2

��
1

tan−1ðf C∕f DÞ
�
≈
π

2

�
f D
f C

�

implies leakage increases linearly with drift frequency, i.e.,
as a random walk, where for f C > f D the upper limit is
asymptotically approached.

The ratio of the leaked starlight, at the planet location
~θP, to the planet light is given by ðLS∕LPÞILEAKð~θPÞ,
where LS

LP
is the luminosity ratio of the star-to-planet. In gen-

eral to ‘see’ the planet against this background requires
ðLP∕½LSIIEAKð~θPÞ�Þ ≥ 1, i.e., the planet should appear
brighter than the leaked speckle. This implies that the frac-
tional leaked starlight is at, or lower, than the luminosity
ratio. The ratio LS∕LP is the inverse of the required operating
contrast; therefore, to ‘see’ the planet requires:

ILEAKð~θPÞ ≤
LP
LS

¼ 1

hCi : (25)

The required operating contrast hCi is set by the science and
ILEAKð~θPÞ relates it to the instrument requirements. Thus for
each star with a planet in the HZ at an angular separation of
~θP, with a given luminosity ratio, a requirement can be set on
ILEAKð~θPÞ and thus a requirement on the rms amplitude and
wavefront errors and implicitly on their PSDs.

Since the leakage is proportional to the inverse of the con-
trast, this implies that the contrast increases with increasing
control frequency, or conversely, that the tolerances on the
amplitude and wavefront errors are more stressing for control
frequencies slower than the drift frequencies. Thus a tele-
scope with faster control, relative to its drift, has more
relaxed tolerances on amplitude and wavefront errors.

If we assume a cubic spatial frequency power-law PSD,
α ¼ 3, and coronagraphic transmission at the IWA of
TðθÞ ¼ 1, and integrating the leakage over a region defined
by a focal plane speckle to give ILEAKð~θÞ ≈ σ2δϕPSDδϕð~θÞ,
and integrating the 3-D PSD out to the control frequency
f C yields

PSDð~f Þ ¼ 3

2π2f 2n

ffiffiffi
3

4

r �
σ2T

1þ ðj~f j∕f nÞ3
�
:

Equating the two gives

σWFE ¼ λffiffiffiffiffiffiffiffihCip f n
3

3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
tan−1ðf C∕f DÞ

r
½1þ ðj~f j∕f nÞ3�

1
2;

and

ILEAKð~θÞ ≈
σ2Tffiffiffi
3

p
π2

tan−1
�
f C
f D

�
¼ 10−10: (26)

Solving for σT ¼ 3
1
4π × 10−5∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan−1ðf C∕f DÞ

p
yields σWFE ≈

0.0088652
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2∕πÞ tan−1ðf C∕f DÞ

p
nm, where σWFE is the rms

wavefront error at a single spatial frequency of 2 cpa
but with the temporal control folded in. If the control
frequency is much greater than the drift frequency then
ð2∕πÞ tan−1ðf C∕f DÞ ≈ 1 and an upper-bound of σWFE≈
0.0089 nm at 2 cpa. Note that this σWFE is the rms of a single
spatial term of the PSD integrated over all temporal frequen-
cies. Figure 11 plots the wavefront error at this single spatial
frequency versus the ratio of control to drift frequency. Thus,
as expected, the tolerance to achieve and hold contrast is
more stressing as the control frequency falls below the
drift frequency. Control at frequencies less than the drift fre-
quency places increasingly demanding tolerances on the
wavefront and amplitude errors; thus, the lower the control
frequency, the lower the allowable errors, and a clear trade
exists between allowable wavefront error and the ratio of
control to drift frequencies. This trade has significant impact
on the design of a flight coronagraphic system.

For each of the candidate stars in the HIP30 database, the
expected HZ and flux ratio have been calculated (Fig. 6), and
this therefore sets a requirement on the wavefront and ampli-
tude errors at the spatial frequency defined by the HZ. A
lower bound on the phase-sensing precision is inferred
from the Heisenberg uncertainty relations. The product of
the uncertainty in photon counts and phase is given by
hnihϕi ≥ 1∕2 and is equal to ½ for all naturally occurring
light,33 and where hni ¼ σn and hϕi ¼ σϕ. The lower
bound on the standard deviation in sensing phase for a
given photon rate is:

σϕ ¼ 1

2
ffiffiffi
n

p ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
RnΔt

p → σWFE ¼
�

λ

4π

��
1ffiffiffiffiffiffiffiffiffiffi
RnΔt

p
�
: (27)

The number of detected photons is n, and RnΔt is the pro-
duct of the photon count rate with integration time. This
expresses a theoretical lower bound on the precision of
phase sensing that in practice is usually not achievable
due to sampling, detector quantization, and other noise
sources. However, the theoretical precision can be used to
estimate the bound on wavefront sensing precision. For
example, sensing of 0.1 nm rms wavefront error requires
∼200; 000 photons per speckle (or per spatial frequency).

Fig. 11 WFE at 2 cpa versus control. Full-control effectiveness is not
reached until the control frequency exceeds the drift frequency.
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If only the photons that leak through the coronagraph are
used for wavefront sensing, then the integration times are
longer than if all the photons could be optimally used.

To derive a theoretical bound for coronagraphic wave-
front error, we use Eqs. (21) and (28), and ignoring ampli-
tude errors:

PSFLð~θÞ � �fTCORð~θÞ½σ2δϕPSDδϕð~θÞ�gj~θ¼~θP

≤
LP
LS

¼ 1

hCi : (28)

If we assume the integral (convolution) is taken over the
region defined by a single speckle, i.e. over PSFLð~θÞ, and that
the transmission of the coronagraph at the location of the
planet is unity, i.e. TCORð~θp ¼ 1Þ, and use the phase PSD
with a knee frequency of 1 cpa and exponent of 3, and sol-
ving for the wavefront precision at the IWA gives

σWFE ¼ λ
3

3
4

π
ffiffiffi
2

p f nffiffiffiffiffiffiffiffihCip
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
tan−1ðf C∕f DÞ

r
½1þ ðIWA∕f nÞ3�12;

(29)

The wavefront error requirement derived in Eq. (29)
scales inversely as the square root of contrast and approxi-
mately as the cube of the angular separation due to the
assumed form for the wavefront error PSD. For a knee
frequency such that f n ≪ IWA the requirement scales
as ∼IWA

3
2∕

ffiffiffiffi
f n

p
and for a knee frequency such that

f n ≫ IWA (white noise assumption) the requirement scales
linearly with the knee frequency.

Equation (29) expresses the required rms wavefront error
required to achieve a given contrast at a given IWA, folding
in the knee frequency and ratio of control to drift frequency.
The required rms wavefront error was estimated via Eq. (29)
for each of the HIP30 candidates and plotted versus angular
separation in Fig. 12. Figure 12 assumes a power law PSD
with an exponent of 3 and a knee frequency of 1 cpa, a 4-m
telescope at a wavelength of 550 nm, and assumes that the
control frequency is fast with respect to the drift frequency.

The most stressing requirements are for the G stars and an
angular separations of 1ðλ∕DÞ. The results for coronagraphs
with IWA ¼ 2ðλ∕DÞ does not give significantly different

results, yielding approximately wavefront error requirements
of ∼0.006 nm rms.

This requirement implicitly assumes the photons are
available to sense to this level; however, there are clearly
two cases: (1) all the photons from the target star, or (2) only
the photons that leak through the occulter, i.e. dark photons.
Folding in the time to sense to each wavefront error require-
ment for each of the HIP30 stars under these two assump-
tions results in the two extremes plotted in Fig. 13. Using
only the dark photons implies only those stellar photons that
are leaked by the occulting mask and Lyot stop, and using all
the photons refers to using all the stellar photons collected by
telescope. The time to sense the two extremes varies drama-
tically as shown in Fig. 13.

A third case arises, that of internal metrology. Internal
metrology would generally require photon sources internal
to telescope and optics to sense the relative placements,
deformations, and drifts of the optics and components. In
an internal metrology approach, the photons used for sensing
and control are not from the stellar source but from a source
internal to the spacecraft, such as one or more lasers, and
hence not limited by the stellar photon rates and could result
in a robust sensing and control but with the added complexity
of additional optics to route the lasers to the optics and
possibly separate detectors. Such an approach should be
considered as part of the sensing and control trade space
but is not further discussed herein.

Figure 13 plots the time to sense to each of the required
wavefront errors versus angular separation for each of the
HIP30 candidates, but assuming a V-band spectral filter
centered on 550 nm with a 4-m aperture. A broader filter
would shorten the time; however, it has not yet been shown
that sensing and control through a coronagraph is feasible
with broadband filters. It is seen that the times are prohibi-
tively long using only the leaked photons at the final control
step. Such an approach would likely require internal metrol-
ogy, unless the photons which are reflected and/or absorbed
at the occulting mask are also used (lower plot). Figure 13
assumes that effectively no drift occurs in the wavefront
during the sensing time. If drift does occur, then tolerances
are more demanding and it would scale as the functional
form shown in Fig. 11.

Fig. 12 Required WFE for each HIP30 candidate to yield stellar leak-
age, at the location of planet in the HZ, equal to the planet brightness,
assuming the control frequency is fast with respect to drift.

Fig. 13 Photon-limited time to sense WFE for each HIP30 candidate
to yield leakage equal to planet brightness, at planet in HZ, assuming
fast control with respect to the drift. (a) Time to sense assuming only
photons that leak by the mask, and (b) all photons are used.
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One of the underlying questions is whether enough
photons are collected from a given target star to control to
the contrast needed. The results shown in Fig. 13 attempt
to answer that question. No reasonable mission could fly
if only the leaked photons were used as the prime photon
source for sensing and control. However, modulation
schemes whereby the deformable mirror and/or other optics
are deliberately moved to modulate the leaked photons
would greatly shorten the time. A multitude of wavefront
control approaches have been or are under development and
many are based on variations of electric field conjugation.
See, for example, Ref. 34 and the references therein. What
is not clear in these approaches are the amount of photons
actually collected to achieve the contrast results.

Control can be broken down into a hierarchy of regimes.
In optical sensing and control, what is generally sensed are
electrons from the detector, from which it is inferred that
photons are counted via the quantum efficiency. Thus,
photon counts are measured and a model and/or algorithmic
approach subsequently used to convert photons to estimates
of the amplitude and wavefront errors. However, wavefront
error cannot ever be directly measured since it corresponds to
phase of the optical field which is not observable33 and only
photons converted to electrons in the form of current is
measured.

Figure 14 shows an example of stability and control for
the proposed Extrasolar Planetary Imaging Coronagraph
(EPIC) mission.35 Figure 14(a) shows rms WFE in nm
based on the rollup of a structural/thermal/optical model
of the telescope and visible nulling coronagraph instrument

versus time. The primary reason for growth in wavefront
error is slow thermal drift due to spacecraft rolling with
respect to sun angle during an observation from heliocentric
orbit. The box shows the time window over which the re-
quirement is met. Figure 14(b) shows the inverse of contrast
(leakage) versus time. This is for a coronagraphic mission for
Jovian planets and hence requires a less demanding 109 con-
trast than a terrestrial planet mission. Based on the EPIC
model a 7000-s stability window is achieved that allows
for an active control scheme whereby null control sequences,
∼1200 s, are interlaced with observing sequences of
approximately 7000 s and where at the outset of observing
sequence the wavefront error is better than required but drifts
like a random walk up to its requirement prior to the null
control sequence. A terrestrial planet detection mission
will have more demanding tolerances on achieving and
maintaining the contrast, which will likely drive its short
stability times and hence short observation windows if an
active scheme is used. An adaptive scheme where continuous
control occurs through the science observation may be more
robust.

For many optical control systems the phase is fit to the
control modes of the DM, i.e., either as modeled or measured
influence functions of the DM, or as a linear superposition of
these influence functions, implying a linear model. Each
influence function is the change in wavefront due to a unit
motion of a single control degree of freedom (DOF), and
there are as many influence functions as control DOFs.
Each influence function is controlled by a voltage or set
of voltages on the actuators. Various approaches, such as

Fig. 14 Stability and control sequence for extrasolar planetary imaging coronagraph. (a) rms WFE in nm based on the rollup of a structural/thermal/
optical model of the telescope and visible nulling coronagraph instrument versus time. (b) The inverse of contrast (leakage) versus time. (c) An active
control scheme whereby null control sequences, ∼1200 s, are interlaced with observing sequences of approximately 7000 s.
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combining the influence functions and solving the eigen-
modes to orthogonalize and reduce the DOFs, are
available.36 However, from a control point of view these
approaches infer wavefront and/or amplitude and subse-
quently decompose it into control modes, and feedback to
actuators in either an active or adaptive fashion. An alterna-
tive approach is to directly map what is measured, i.e.
photons (or electrons), to the control voltages of the DM
and remove the step of converting to wavefront and ampli-
tude errors, an approach deemed “null control”. Such an
approach implies that no separation of wavefront and ampli-
tude errors are required; the only thing that matters in a cor-
onagraph are the leaked focal plane photons which reduce
the contrast, and thus the control system works to reduce
these directly by choosing combinations of actuator motions
which minimize the “darkness” at a specific or range of loca-
tions in the focal plane.21 This can also be performed in an
active or adaptive fashion, where active refers to performing
the control prior to each observation but not during it. If an
out of specification condition occurred during the observa-
tion, then control could be restarted. Adaptive refers to con-
trol throughout the observation in a closed-loop approach.
There are advantages and disadvantages of each.

Sensing and control defines a complex parameter space
whereby square-law-type wavefront sensing (incoherent)
versus interferometric (coherent), with using only the
photons from the stellar source, or using internal metrology.
If the drift rates are fast relative to the photon collection time
to sense for control then there may be no choice but to add
internal metrology to mitigate the starved photon problem.

Derivations and assessment of the entire sensing and
control trade space is outside the scope of this work, but we
attempted to address it at a conceptual level based upon
expected stellar photon rates from the HIP30 catalog. The
important parameter is the ratio of the drift to control rate;
if the drift is slow with respect to the control, then a quasi-
static condition occurs whereby control may be needed only
at the outset of an observation. One possibility would be to
specify the telescope requirements such that this condition
is always true, but it may result in telescope that is either
unbuildable or untestable, or prohibitively expensive. How-
ever, the telescope dynamic tolerances can only be relaxed to
the point where the lowest photon rate science target still
gives enough photons to achieve closed loop. Otherwise a
degradation in performance will result. Alternatively, if
only a few of the science sources drive the requirements,
an alternative approach would be to remove those candidate
sources deemed most stressing, alleviating the stressing
requirements, or alternatively set the sensing and control
separately for each star system such that it is optimal for
the location of the HZ.

4 Summary and Conclusions
Herein we have mapped a candidate database of stars within
30 parsecs and deduced the flux ratio, contrast, inner work-
ing angle, and time to SNR for each star for each spectral
class, assuming an Earth-sized terrestrial planet in its habi-
table zone, an IWA ¼ 2ðλ∕DÞ), and diffraction dependency
on the background that scales as the cube of the inner
working angle. Based on these assumptions the primary
conclusions are:

(1) Assessment of all stars within 30 parsecs would
require a 120-m telescope operating at IWA ¼
2ðλ∕DÞ, however a 4-m telescope operating at
IWA ¼ 2ðλ∕DÞ would allow for searching 94 stars,
of which 50 are G-stars, within ∼34 days per visit,
or ∼170 days total if each was visited five times
for completeness.

(2) The set of 575 candidate stars have flux ratios which
vary from 3 × 10−11 to 5 × 10−8 with most G-stars
having flux ratios between 3 × 10−10 to 1 × 10−8,
implying contrast requirements at the IWA from
0.3 × 1010 to 108.

(3) The flux ratio has an approximately linear depen-
dence versus planet-to-star angular separation with
the majority of G-stars falling between 5 and
100 mas; however, the planets closer in HZ have
more favorable contrast ratios. M-stars would have
planets in the HZ and the smallest separation while
F would be at the largest separations.

(4) The aperture flux of candidate planets in the HZ
varies by only a factor of 3 over the span of angular
separations and spectral classes.

(5) The V-band sensitivity scales as ∼D10∕3 and yields
time to SNR ¼ 5 for a planet in the HZ that varies
by approximately four orders of magnitude, and for
a 4-m telescope varies from ∼10 to ∼100; 000 s with
most G-stars in the range of 1000–100,000 s.

(6) The luminosity ratio scales as approximately the
inverse of the angular separation independent of spec-
tral class, implying that a clear trade/compromise
exists between IWA and contrast when the available
candidate stars are incorporated into the design
approach.

(7) The most stressing stars, close IWA, requires wave-
front tolerances of ∼0.008 nm rms wavefront error
for control times that are comparable to drift times;
however, slow control, i.e., control times that are
long relative to the drift times, requires significantly
more demanding tolerances. Adaptive controls
appear to be the most promising, since this appears
feasible relative to the dynamics of realistic space-
craft and wavefront drifts.

(8) The wavefront error requirements are a strong func-
tion of the angular separation and are >0.008 nm rms
wavefront error for the majority of G-stars.

(9) The times to sense and control is limited by the
photon statistics which sets a bound on recovery of
wavefront errors based on the photon count rates.
Wavefront or null-control approaches based only
the leaked starlight, without modulating to increase
the counts, have prohibitively long sensing times.
Modulation schemes, which deliberately change
the wavefront errors in a known and deterministic
way greatly increase the counts and hence shorten
the sensing and control times. Approaches that use
all the stellar photons have sensing times that are
about eight orders of magnitude shorter than schemes
that use only leakage photons. In practice, this can be
accomplished with a visible nulling coronagraph that
uses both the bright and dark output channels, or by
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approaches which pick stellar photons off from the
front of the occulting mask.
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